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Abstract. We consider gauge theories based on abelian p−forms on real compact hyperbolic spaces. Using
the zeta-function regularization method and the trace tensor kernel formula, we determine explicitly an
expression for the vacuum energy (Casimir energy) corresponding to skew-symmetric tensor fields. It is
shown that the topological component of the Casimir energy for co-exact forms on even-dimensional spaces,
associated with the trivial character, is always negative. We infer on the possible cosmological consequences
of this result.

PACS. 04.70.Dy, 11.25.Mj

1 Introduction

The topological Casimir effect for scalar (or spinor) fields
on spaces of form Γ\X̃, where Γ is a discrete group acting
on manifold X̃, has become a very exciting and important
issue in areas of quantum field theory and cosmology [1-9].
Initial evaluation of the Casimir energy has been given for
X̃ = R

N , S
N . In [7-15], the calculation involves the case

in which X̃ is a Lobachevsky real hyperbolic space.
Maximally symmetric spaces, such as the hyperbolic

spaces, play a very important role in supergravity [16] and
in superstring theory [17] and definitely plays a crucial role
in cosmology [18–20]. In this paper we present a decompo-
sition of the Hodge Laplacian and the tensor kernel trace
formula for free generalized gauge fields (p−forms) on real
hyperbolic space forms. The main ingredient required is
a type of differential form structure on the physical, aux-
iliary, or ghost variables. We evaluate spectral functions
and the Casimir effect associated with physical degrees of
freedom of the Hodge–de Rham operators on p−forms. Let
ωp, ϕp be exterior differential p−forms; then, the invari-

ant inner product is defined by (ωp, ϕp)
def=

∫
X̃
ωp ∧ ∗ϕp.

Under the action of the Hodge ∗ operator the follow-
ing properties for forms hold: ωp = (−1)p(n−p)ωp, and
dd = δδ = 0, δ = (−1)np+n+1 ∗ d ∗ . The operators d
and δ are adjoint to each other with respect to this inner
product for p−forms: (δωp, ϕp) = (ωp, dϕp). In quantum
field theory the Lagrangian associated with ωp takes the
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form: dωp ∧∗dωp (gauge field) δωp ∧∗δωp (co-gauge field).
The Euler-Lagrange equations, supplied with the gauge,
give: Lpωp = 0 , δωp = 0 (Lorentz gauge); Lpωp = 0 ,
dωp = 0 (co-Lorentz gauge). These Lagrangians give pos-
sible representation of tensor fields or generalized abelian
gauge fields.

As an application, we evaluate the Casimir effect as-
sociated with topologically inequivalent configurations of
Abelian co-exact forms on real compact hyperbolic mani-
folds.

2 The trace formula
applied to the tensor kernel

Let us consider anN−dimensional compact real hyperbolic
spaceXΓ with universal covering X̃ and fundamental group
Γ . We can represent X̃ as the symmetric spaceG/K, where
G = SO1(N, 1) and K = SO(N) is a maximal compact
subgroup of G. Then we regard Γ as a discrete subgroup
of G acting isometrically on X̃, and we take XΓ to be the
quotient space by that action: XΓ = Γ\X̃ = Γ\G/K. Let
Vol(Γ\G) denote the integral of the constant function I

on Γ\G with respect to the G−invariant measure on Γ\G
induced by dx, Vol (Γ\G) =

∫
Γ\G

Idx. For 0 ≤ p ≤ N − 1
the Fried trace formula applied to the heat kernel Kt =
e−tLp holds [21]:

Tr
(
e−tLp

)
= I

(p)
Γ (Kt) + I

(p−1)
Γ (Kt)

+H(p)
Γ (Kt) +H

(p−1)
Γ (Kt), (1)
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where I(p)
Γ (Kt) , H

(p)
Γ (Kt) are the identity and hyperbolic

orbital integrals, respectively:

I
(p)
Γ (Kt)

def=
χ(1) Vol(Γ\G)

4π

×
∫

R

µσp(r)e−t(r2+p+ρ2
0)dr, (2)

H
(p)
Γ (Kt)

def=
1√
4πt

∑
γ∈CΓ −{1}

χ(γ)
j(γ)

tγC(γ)χσp
(mγ)

×e−t(ρ2
0+p)− t2γ

4t , (3)

CΓ ⊂ Γ is a complete set of representations in Γ of its
conjugacy classes, and C(γ) is a well defined function on
Γ − {1}, ρ0 = (N − 1)/2, and χσ(m) = trace(σ(m)) is the
character σ for m ∈ SO(N). The trace formula involves
the Harish-Chandra-Plancherel measure µσp

(r) which is
given by

µσp
(r) =

(
N − 1
p

)
×



CGπP (r) r tanh (πr) ,

for N = 2n
CGπP (r) , for N = 2n+ 1

(4)

where CG =
(
22N−4Γ (N/2)2

)
, and P (r) is a polynomial,

which presents the following form

P (r) =




∏n−2
j=0

[
r2 + ((2j + 1)/2)2

]
=

∑n−1
�=0 a2�r

2�,

forN = 2n∏n−1
j=0

[
r2 + j2

]
=

∑n
�=0 a2�r

2�, forN = 2n+ 1
(5)

a2� are the Miatello coefficients [22, 23]. For p ≥ 1 there
is a measure µσ(r) corresponding to a general irreducible
representation σ. Let σp be the standard representation of
SO(N − 1) on Λp

C
(N−1). If N = 2n is even then σp (0 ≤

p ≤ n− 1) is always irreducible; if N = 2n+ 1 then every
σp is irreducible except for p = (N − 1)/2 = n, in which
case σn is the direct sum of two spin–(1/2) representations
σ± : σn = σ+ ⊕ σ−. For p = n the representation τn of
K = SO(2n) on Λn

C
2n is not irreducible: τn = τ+

n ⊕ τ−
n

is the direct sum of two spin–(1/2) representations.
In the case of the trivial representation (p = 0, i.e.,

for smooth functions or smooth vector bundle sections)
the measure µ(r) ≡ µ0(r) corresponds to the trivial repre-
sentation. Therefore, we take I(−1)

Γ (Kt) = H
(−1)
Γ (Kt) = 0.

Since σ0 is the trivial representation, one has χσ0(mγ) = 1.
In this case, formula (1) reduces exactly to the trace formula
for p = 0 [7,8, 24,25].

3 The spectral functions of exterior forms
and the vacuum energy

If Lp is a self-adjoint Laplacian on p−forms then the fol-
lowing results hold. There exists ε, δ > 0 such that for
0 < t < δ the heat kernel expansion for Laplace opera-
tors on a compact manifold XΓ is given by Tr

(
e−tLp

)
=

∑
0≤�≤�0

a�(Lp)t−� + O(tε). The zeta function of Lp is the
Mellin transform ζ(s|Lp) = (Γ (s))−1

∫
R+

Tr e−tLpts−1dt.
This function equals Tr

(
L−s

p

)
for s > (1/2) dim(Γ\G).

The transverse part of the skew-symmetric tensor is
represented by the co-exact p−form ω

(CE)
p = δωp+1, which

trivially satisfies δω(CE)
p = 0, and we denote by L

(CE)
p the

restriction of the Laplacian on the co–exact p−form. The
goal now is to extract the co–exact p−form on the mani-
fold which describes the physical degrees of freedom of the
system, and presents by alternating sum of forms [26–28].

3.1 The identity component of the isometry group

The zeta function related to the identity integral I(p)
Γ (Kt)

in (2) has the form

ζI(s|Lp) =
χ (1) Vol (Γ\G)

4πΓ (s)

∫ ∞

0
ts−1dt

×
∫

R

µσp(r)e−ty(r2;m2
p)dr

=
1
4
χ (1) Vol (Γ\G)

×
∫

R

µσp
(r)

[
y(r2;m2

p)
]−s

dr, (6)

where y(r2;m2
p) ≡ r2 +m2

p, m
2
p ≡ b(p) +(ρ0 −p)2. Because

of (4) and (5) it is convenient to consider even- and odd-
dimensional cases separately.

3.1.1 Even-dimensional manifold

Using (4) and (5) in (6) for N = 2n we get

ζ
(2n)
I (s|Lp) =

1
4
χ(1) Vol (Γ\G)CG

∫
R

P (r)r tanh(πr)dr[
y(r2;m2

p)
]s

=
1
4
χ(1) Vol (Γ\G)CG

×
n−1∑
j=0

a2j

∫
R

r2j+1 tanh (πr) dr[
y(r2;m2

p)
]s . (7)

Fora, δ > 0, z ∈ C, define the entire functionsKm(s; δ, a) def=∫
R
r2m(δ+r2)−s sech2(ar)dr. Then for Re s > j+1, j ≥ 0,

one gets [25]∫
R

r2j+1 tanh (ar) dr
(δ + r2)s =

=
aj!
2

j∑
�=0

Kj−1 (s− �− 1; δ, a)
(j − �)! (s− 1) (s− 2) . . . (s− (�+ 1))

, (8)

The following result follows:

ζ
(2n)
I (s|Lp) =

π

8
χ(1) Vol(Γ\G)CΓ

(
2n− 1
p

) n−1∑
j=0

a2jj!
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×
j∑

�=0

Kj−1

(
s− �− 1; b(p) + (ρ0 − p)2 , π

)
(j − �)! (s− 1) (s− 2) . . . (s− (�+ 1))

. (9)

3.1.2 Odd-dimensional manifold

In odd-dimensional case, N = 2n+ 1, we get

ζ
(2n+1)
I (s|Lp) =

1
4
χ(1) Vol (Γ\G)CΓ

(
2n
p

)

×
n∑

j=0

a2j

∫
R

r2j
[
y(r2;m2

p)
]−s

dr. (10)

Using the formula
∫

R
r2j+1(δ2+r2)−sdr = δ2j−2sΓ (j)Γ (s−

j)/(Γ (s)), we find:

ζ
(2n+1)
I (s|Lp) =

χ (1) Vol (Γ\G)
4Γ (s)

((
2n
p

))

×
n∑

j=0

a2jΓ
(
j + 1

2

)
Γ

(
s− j − 1

2

)
m2s−2j−1

p

. (11)

3.2 The hyperbolic component of the isometry group

The zeta function associated with hyperbolic orbital inte-
gral H(p)

Γ (Kt) takes the form

ζH(s|Lp) =
1√

4πΓ (s)

∑
γ∈CΓ −{1}

χ (γ) j−1 (γ) tγC (γ)

×
∫ ∞

0
ts− 3

2 e−tm2
p+

t2γ
4t dt. (12)

Using the K−Bessel function Kν(s), s ∈ C, defined by
Kν(2s) def= (1/2)sν × ∫ ∞

0 t−ν−1 exp{−t− s2/t}dt, we have

ζH(s|Lp) =
1√

πΓ (s)

∑
γ∈CΓ −{1}

χ (γ) j−1 (γ)C (γ)

×ts+ 1
2

γ

K−s+ 1
2
(tγmp)

[2mp]s− 1
2

=
∫ ∞

0

∑
γ∈CΓ −{1}

χ (γ) tγj−1 (γ)C (γ)
Γ (s)Γ (1 − s)

× e−(t+mp)tγdt

(2tmp + t2)s
. (13)

3.2.1 Logarithmic derivative of the Selberg zeta function

The function ψΓ (s;χ) defined in [29]

ψΓ (z;χ) def=
∑

γ∈CΓ −{1}
χ (γ) tγj−1 (γ)C (γ) e−(z−ρ0)tγ ,

(14)

for Re s > 2ρ0, is a holomorphic function in the half-
plane Re s > 2ρ0 and admits a meromorphic continua-
tion to the full complex plane. It has been shown that
there is a meromorphic function ZΓ (s;χ) on C such that
(d/dz) logZΓ (z;χ) = ψΓ (z;χ). ZΓ (z;χ) suitable normal-
ized is the Selberg zeta function attached to (G,K, Γ, χ).
Therefore,

ζH(s|Lp) =
1

Γ (s)Γ (1 − s)

∫ ∞

0

ψΓ (ρ0 + t+mp;χ)
(2tmp + t2)s

dt.

(15)
Canonical quantization of Abelian p−forms yields a formal
expression (1/2)ζ(s = −1/2|Lp) = (1/2)

∑
j λ

1/2 for the
Casimir energy, where {λ}∞

j≥0 is the set of eigenvalues (with
multiplicity) of the Laplacian Lp on smooth sections of
a vector bundle over XΓ = Γ\H

N induced by a finite-
dimensional unitary representation χ of Γ . The regularized
Casimir energy related to co-exact forms (the alternating
sum of zero- and p−form components) on real compact
even-dimensional hyperbolic manifolds is given as follows:

E(mp)N=2n =
1
2
ζ(−1/2|L(CE)

p ) =
π

16
χ(1) Vol(Γ\G)CG

×
n−1∑
j=0

j∑
�=0

a2jj!

(j − �)!
∏�

q=0(− 1
2 − (q + 1))

×
[(

2n− 1
p

)
Kj−1(−�− 3

2
;m2

p, π)

+ Kj−1(−�− 3
2

;m2
0, π)

]

− 1
2π

∫ ∞

0

{
ψΓ (ρ0 + t+mp;χ)

[
2tmp + t2

] 1
2

+ψΓ (ρ0 + t+m0;χ)
[
2tm0 + t2

] 1
2
}
dt. (16)

In the case of scalar field (p = 0 for a trivial representation)
the Casimir energy becomes

E(m0)N=2n =
π

16
χ(1) Vol(Γ\G)CG

×
n−1∑
j=0

j∑
�=0

a2jj!Kj−1(−�− 3
2 ;m2

0, π)

(j − �)!
∏�

q=0(− 1
2 − (q + 1))

− 1
2π

∫ ∞

0
ψΓ (ρ0 + t+m0;χ)

[
2tm0 + t2

] 1
2 dt. (17)

Formula (16) with positive parametermp gives the reg-
ularized vacuum energy E(mp) which is finite. From (11) it
follows that in the case of oddN the identity component of
E(mp) has poles at s = −1/2 and therefore E(mp) cannot
be obtained by the method available for even-dimensional
manifolds, which agrees with result obtained in [13]. For
the trivial representation χ = 1 of Γ , the topological com-
ponent of the Casimir energy E(mp) (the last term in (16))
is always negative, in agreement with results previously ob-
tained in [14]. In the case of scalar fields (zero-forms) our
result agrees with one founded in [13].
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4 Concluding remarks

Cosmological predictions, such as the microwave back-
ground anisotropies (CMB) and the current acceleration
expansion of the universe [30], depend pretty much on
the details of the theoretical model under consideration.
In particular, the recent data obtained by the Wilkinson
Microwave Anisotropy Probe (WMAP) [31] satellite con-
firmed, and set new standards of accuracy, to the previous
COBE’s measurement of a low quadrupole moment in the
angular power spectrum of the CMB, which is in accor-
dancewith the assumption that the topology of the universe
might be non-trivial, with particular emphasis on the case
of a compact hyperbolic universe. Combined with this ob-
servation, the WMAP satellite also indicates that ∼ 60%
of the critical energy density of the universe is contributed
by a smoothly distributed vacuum energy (Casimir energy)
or dark energy, whose net effect is repulsive (leading, thus,
to an accelerated expansion of the universe).

In this paper, we have shown that the topological com-
ponent of the Casimir energy for co-exact forms on even-
dimensional manifolds, associated with the trivial char-
acter, is always negative. This result confirms the above
mentioned measurements and we can infer on the cosmo-
logical consequences of it. We plan to address this question
in details in a forthcoming paper [32].
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